Properties

Label 1728.30313.8.d1.a1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{18}:C_6$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $a, c^{12}, c^{16}, b, e^{2}, c^{18}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $(C_2^2\times D_6):D_{18}$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.S_4\times C_2^3\times S_3$
$\operatorname{Aut}(H)$ $C_6^2.D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_6^2.D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2\times D_{18}$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$D_6:D_{18}$
Normal closure:$C_6^2.S_4$
Core:$C_6^2$
Minimal over-subgroups:$C_6^2.S_4$$D_6:D_{18}$
Maximal under-subgroups:$C_6\times C_{18}$$C_3\times D_{18}$$C_9:C_{12}$$C_6\wr C_2$$C_9:D_4$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$1$
Projective image$C_2^2:D_{18}\times S_3$