Subgroup ($H$) information
| Description: | $C_3$ |
| Order: | \(3\) |
| Index: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| Exponent: | \(3\) |
| Generators: |
$c^{12}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Ambient group ($G$) information
| Description: | $C_6.(D_6\times S_4)$ |
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_2^4.S_3^2$ |
| Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | $C_2^5.D_6^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
| Outer Automorphisms: | $C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $3$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2\times C_6).C_6^3.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2$, of order \(2\) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $(C_2^2\times C_6):C_{36}$ | |||||||||||||
| Normalizer: | $C_6.(D_6\times S_4)$ | |||||||||||||
| Minimal over-subgroups: | $C_3^2$ | $C_9$ | $C_9$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $S_3$ | $S_3$ | $S_3$ | $S_3$ |
| Maximal under-subgroups: | $C_1$ |
Other information
| Möbius function | $0$ |
| Projective image | $C_6.(D_6\times S_4)$ |