Properties

Label 1728.2061.72.b1
Order $ 2^{3} \cdot 3 $
Index $ 2^{3} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{12}$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{6}c^{3}, c^{6}, b^{4}, b^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_4.D_8\times \He_3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $D_4\times C_3^2$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $D_4\times \GL(2,3)$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
Outer Automorphisms: $C_2\times \GL(2,3)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metacyclic (hence metabelian).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times D_4^2\times \AGL(2,3)$
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(27648\)\(\medspace = 2^{10} \cdot 3^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{12}^2.C_6$
Normalizer:$C_4.D_8\times \He_3$
Minimal over-subgroups:$C_6\times C_{12}$$C_4\times C_{12}$$C_6\times Q_8$$C_2\times C_{24}$
Maximal under-subgroups:$C_2\times C_6$$C_{12}$$C_{12}$$C_2\times C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_6^2:C_4$