Subgroup ($H$) information
Description: | $C_2\times C_{12}$ |
Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Index: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$a^{6}c^{3}, c^{6}, b^{4}, b^{6}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_4.D_8\times \He_3$ |
Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Nilpotency class: | $3$ |
Derived length: | $2$ |
The ambient group is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $D_4\times C_3^2$ |
Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $D_4\times \GL(2,3)$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Outer Automorphisms: | $C_2\times \GL(2,3)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Nilpotency class: | $2$ |
Derived length: | $2$ |
The quotient is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metacyclic (hence metabelian).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\times D_4^2\times \AGL(2,3)$ |
$\operatorname{Aut}(H)$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(27648\)\(\medspace = 2^{10} \cdot 3^{3} \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_6^2:C_4$ |