Subgroup ($H$) information
Description: | $C_{12}:C_{24}$ |
Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Generators: |
$a^{3}, c^{6}, a^{6}, c^{3}, b^{6}c^{6}, c^{4}, b^{4}$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is normal, nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metacyclic (hence metabelian).
Ambient group ($G$) information
Description: | $C_4.D_8\times \He_3$ |
Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Nilpotency class: | $3$ |
Derived length: | $2$ |
The ambient group is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\times D_4^2\times \AGL(2,3)$ |
$\operatorname{Aut}(H)$ | $\SL(2,3).C_2^4.C_2^3$ |
$\operatorname{res}(S)$ | $C_{12}:C_2^5$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
$W$ | $C_3\times D_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Centralizer: | $C_6\times C_{12}$ | |||
Normalizer: | $C_4.D_8\times \He_3$ | |||
Minimal over-subgroups: | $C_{12}^2.C_6$ | $C_4^2.C_6^2$ | ||
Maximal under-subgroups: | $C_{12}^2$ | $C_6\times C_{24}$ | $C_4:C_{24}$ | $C_4:C_{24}$ |
Other information
Number of subgroups in this autjugacy class | $4$ |
Number of conjugacy classes in this autjugacy class | $4$ |
Möbius function | $1$ |
Projective image | $C_6^2:C_4$ |