Subgroup ($H$) information
Description: | $C_3^2$ |
Order: | \(9\)\(\medspace = 3^{2} \) |
Index: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Exponent: | \(3\) |
Generators: |
$c^{4}, b^{4}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_4.D_8\times \He_3$ |
Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Nilpotency class: | $3$ |
Derived length: | $2$ |
The ambient group is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $C_{12}.D_8$ |
Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Automorphism Group: | $C_2^3\times D_4^2$, of order \(512\)\(\medspace = 2^{9} \) |
Outer Automorphisms: | $C_2^5$, of order \(32\)\(\medspace = 2^{5} \) |
Nilpotency class: | $3$ |
Derived length: | $2$ |
The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\times D_4^2\times \AGL(2,3)$ |
$\operatorname{Aut}(H)$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\operatorname{res}(S)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
$W$ | $C_3$, of order \(3\) |
Related subgroups
Centralizer: | $C_4^2.C_6^2$ | |||
Normalizer: | $C_4.D_8\times \He_3$ | |||
Complements: | $C_{12}.D_8$ | |||
Minimal over-subgroups: | $\He_3$ | $C_3\times C_6$ | $C_3\times C_6$ | $C_3\times C_6$ |
Maximal under-subgroups: | $C_3$ | $C_3$ |
Other information
Number of subgroups in this autjugacy class | $4$ |
Number of conjugacy classes in this autjugacy class | $4$ |
Möbius function | $0$ |
Projective image | $C_4^2.C_6^2$ |