Properties

Label 1728.18214.9.b1.b1
Order $ 2^{6} \cdot 3 $
Index $ 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_{16}.A_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a^{3}, cd^{18}, bc, d^{9}, d^{36}, a^{2}d^{12}, d^{54}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, a direct factor, nonabelian, and solvable.

Ambient group ($G$) information

Description: $C_9\times Q_{16}.A_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $C_9$
Order: \(9\)\(\medspace = 3^{2} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Automorphism Group: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{12}\times A_4).C_6.C_2^4$
$\operatorname{Aut}(H)$ $D_8:C_2\times S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\operatorname{res}(S)$$D_8:C_2\times S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$D_4\times A_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_{18}$
Normalizer:$C_9\times Q_{16}.A_4$
Complements:$C_9$ $C_9$ $C_9$
Minimal over-subgroups:$C_3\times Q_{16}.A_4$
Maximal under-subgroups:$\SL(2,3):C_2^2$$\SL(2,3):C_2^2$$C_8.A_4$$D_8:C_2^2$$C_3\times Q_{16}$
Autjugate subgroups:1728.18214.9.b1.a11728.18214.9.b1.c1

Other information

Möbius function$0$
Projective image$D_4\times C_9\times A_4$