Properties

Label 1728.18214.8.a1.a1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9\times \SL(2,3)$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $a^{2}d^{36}, d^{36}, cd^{18}, d^{8}, d^{24}, bc$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and solvable.

Ambient group ($G$) information

Description: $C_9\times Q_{16}.A_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{12}\times A_4).C_6.C_2^4$
$\operatorname{Aut}(H)$ $C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_9\times Q_{16}$
Normalizer:$C_9\times Q_{16}.A_4$
Minimal over-subgroups:$\SL(2,3):C_{18}$$\SL(2,3):C_{18}$$\SL(2,3):C_{18}$
Maximal under-subgroups:$C_3\times \SL(2,3)$$Q_8\times C_9$$Q_8:C_9$$Q_8:C_9$$C_3\times C_{18}$

Other information

Möbius function$0$
Projective image$D_4\times A_4$