Properties

Label 1728.1701.12.l1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.D_6$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a^{3}b^{3}, c^{4}, b^{4}, c^{6}, a^{6}b^{6}c^{3}, b^{6}c^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{12}^2.D_6$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\GL(2,3).C_2^6$, of order \(27648\)\(\medspace = 2^{10} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2\times C_2^4.\SL(3,3)$, of order \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
$\card{W}$\(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_{12}^2.C_6$
Normal closure:$C_{12}.D_{12}$
Core:$C_6\times C_{12}$
Minimal over-subgroups:$C_6^2.C_{12}$$C_{12}.D_{12}$
Maximal under-subgroups:$C_6\times C_{12}$$C_3^2:C_8$$C_6:C_8$$C_6:C_8$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed