Properties

Label 1728.1440.8.b1.a1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times C_{36}$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $b^{54}, b^{24}, b^{36}, c^{6}, b^{8}, c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and metacyclic.

Ambient group ($G$) information

Description: $C_9\times C_{12}.D_8$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_2^6.C_2^2$
$\operatorname{Aut}(H)$ $C_2\times C_6^2:D_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(384\)\(\medspace = 2^{7} \cdot 3 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{12}\times C_{36}$
Normalizer:$C_9\times C_{12}.D_8$
Minimal over-subgroups:$C_{12}\times C_{36}$$C_{12}:C_{36}$$C_6:C_{72}$
Maximal under-subgroups:$C_6\times C_{18}$$C_3\times C_{36}$$C_3\times C_{36}$$C_6\times C_{12}$$C_2\times C_{36}$$C_2\times C_{36}$

Other information

Möbius function$0$
Projective image$D_6:C_4$