Properties

Label 1728.1440.3.a1.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}^2.C_2^2$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(3\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, c^{9}, b^{36}, b^{9}, b^{54}c^{3}, c^{4}, c^{6}, b^{24}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_9\times C_{12}.D_8$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_2^6.C_2^2$
$\operatorname{Aut}(H)$ $C_3:(C_2^7.C_2^3)$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(3072\)\(\medspace = 2^{10} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$D_6:C_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{18}$
Normalizer:$C_9\times C_{12}.D_8$
Minimal over-subgroups:$C_9\times C_{12}.D_8$
Maximal under-subgroups:$C_{12}.D_{12}$$C_{12}:C_{24}$$C_{12}:C_{24}$$C_{12}.D_8$$C_{12}.D_8$

Other information

Möbius function$-1$
Projective image$D_6:C_{12}$