Properties

Label 1720.39.20.a1.e1
Order $ 2 \cdot 43 $
Index $ 2^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{86}$
Order: \(86\)\(\medspace = 2 \cdot 43 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(86\)\(\medspace = 2 \cdot 43 \)
Generators: $ac^{215}, c^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_2^2\times C_{430}$
Order: \(1720\)\(\medspace = 2^{3} \cdot 5 \cdot 43 \)
Exponent: \(430\)\(\medspace = 2 \cdot 5 \cdot 43 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Quotient group ($Q$) structure

Description: $C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{84}\times \PSL(2,7)$
$\operatorname{Aut}(H)$ $C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2\times C_{430}$
Normalizer:$C_2^2\times C_{430}$
Complements:$C_2\times C_{10}$ $C_2\times C_{10}$ $C_2\times C_{10}$ $C_2\times C_{10}$
Minimal over-subgroups:$C_{430}$$C_2\times C_{86}$$C_2\times C_{86}$$C_2\times C_{86}$
Maximal under-subgroups:$C_{43}$$C_2$
Autjugate subgroups:1720.39.20.a1.a11720.39.20.a1.b11720.39.20.a1.c11720.39.20.a1.d11720.39.20.a1.f11720.39.20.a1.g1

Other information

Möbius function$-2$
Projective image$C_2\times C_{10}$