Properties

Label 1720.30.40.a1.a1
Order $ 43 $
Index $ 2^{3} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{43}$
Order: \(43\)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(43\)
Generators: $b^{20}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $43$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $D_4\times C_{215}$
Order: \(1720\)\(\medspace = 2^{3} \cdot 5 \cdot 43 \)
Exponent: \(860\)\(\medspace = 2^{2} \cdot 5 \cdot 43 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Quotient group ($Q$) structure

Description: $C_5\times D_4$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $C_4\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
Outer Automorphisms: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times D_4\times C_{84}$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$D_4\times C_{215}$
Normalizer:$D_4\times C_{215}$
Complements:$C_5\times D_4$
Minimal over-subgroups:$C_{215}$$C_{86}$$C_{86}$$C_{86}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_5\times D_4$