Properties

Label 171992678400000000.gn.4._.M
Order $ 2^{24} \cdot 3^{8} \cdot 5^{8} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_5^8.C_2\wr C_4.C_2^2$
Order: \(42998169600000000\)\(\medspace = 2^{24} \cdot 3^{8} \cdot 5^{8} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Generators: $\langle(27,30,28), (28,30,29), (32,34,35), (6,8,7), (6,10,7), (16,17,19), (26,29,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and nonsolvable. Whether it is a direct factor, a semidirect factor, or rational has not been computed.

Ambient group ($G$) information

Description: $A_5^8.C_4^2.D_4^2$
Order: \(171992678400000000\)\(\medspace = 2^{26} \cdot 3^{8} \cdot 5^{8} \)
Exponent: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable. Whether it is rational has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(343985356800000000\)\(\medspace = 2^{27} \cdot 3^{8} \cdot 5^{8} \)
$\operatorname{Aut}(H)$ Group of order \(343985356800000000\)\(\medspace = 2^{27} \cdot 3^{8} \cdot 5^{8} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed