Properties

Label 1680.877.42.a1
Order $ 2^{3} \cdot 5 $
Index $ 2 \cdot 3 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times Q_8$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $b, c^{252}, c^{210}, c^{105}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $D_{140}:C_6$
Order: \(1680\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_3\times D_7$
Order: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Automorphism Group: $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{35}\times A_4).C_6.C_2^5$
$\operatorname{Aut}(H)$ $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{210}$
Normalizer:$D_{140}:C_6$
Complements:$C_3\times D_7$
Minimal over-subgroups:$Q_8\times C_{35}$$Q_8\times C_{15}$$D_{20}:C_2$
Maximal under-subgroups:$C_{20}$$Q_8$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-7$
Projective image$C_6\times D_{70}$