Properties

Label 1680.877.105.a1
Order $ 2^{4} $
Index $ 3 \cdot 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:C_2$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(105\)\(\medspace = 3 \cdot 5 \cdot 7 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, b, c^{105}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $D_{140}:C_6$
Order: \(1680\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{35}\times A_4).C_6.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$D_4:C_6$
Normal closure:$D_{140}:C_2$
Core:$Q_8$
Minimal over-subgroups:$D_{28}:C_2$$D_{20}:C_2$$D_4:C_6$
Maximal under-subgroups:$Q_8$$C_2\times C_4$$D_4$

Other information

Number of subgroups in this autjugacy class$35$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_6\times D_{70}$