Subgroup ($H$) information
| Description: | $C_5$ | 
| Order: | \(5\) | 
| Index: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) | 
| Exponent: | \(5\) | 
| Generators: | $c^{252}$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $5$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.
Ambient group ($G$) information
| Description: | $C_{140}.D_6$ | 
| Order: | \(1680\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \) | 
| Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_{28}.D_6$ | 
| Order: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) | 
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| Automorphism Group: | $C_6\times D_6\times S_4$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) | 
| Outer Automorphisms: | $C_6\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) | 
| Nilpotency class: | $-1$ | 
| Derived length: | $2$ | 
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_6\times S_3\times D_5).C_2^5$ | 
| $\operatorname{Aut}(H)$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \) | 
| $W$ | $C_2$, of order \(2\) | 
Related subgroups
| Centralizer: | $S_3\times C_{140}$ | ||||
| Normalizer: | $C_{140}.D_6$ | ||||
| Complements: | $C_{28}.D_6$ | ||||
| Minimal over-subgroups: | $C_{35}$ | $C_{15}$ | $C_{10}$ | $C_{10}$ | $C_{10}$ | 
| Maximal under-subgroups: | $C_1$ | 
Other information
| Möbius function | $0$ | 
| Projective image | $C_{140}.D_6$ | 
