Properties

Label 1666.6.1666.a1.a1
Order $ 1 $
Index $ 2 \cdot 7^{2} \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_1$
Order: $1$
Index: \(1666\)\(\medspace = 2 \cdot 7^{2} \cdot 17 \)
Exponent: $1$
Generators:
Nilpotency class: $0$
Derived length: $0$

The subgroup is the Frattini subgroup (hence characteristic and normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group (for every $p$), perfect, and rational.

Ambient group ($G$) information

Description: $D_7\times C_{119}$
Order: \(1666\)\(\medspace = 2 \cdot 7^{2} \cdot 17 \)
Exponent: \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $D_7\times C_{119}$
Order: \(1666\)\(\medspace = 2 \cdot 7^{2} \cdot 17 \)
Exponent: \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)
Automorphism Group: $C_2\times C_{48}\times F_7$
Outer Automorphisms: $C_6\times C_{48}$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{48}\times F_7$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$D_7\times C_{119}$
Normalizer:$D_7\times C_{119}$
Complements:$D_7\times C_{119}$
Minimal over-subgroups:$C_{17}$$C_7$$C_7$$C_7$$C_7$$C_7$$C_2$

Other information

Möbius function$7$
Projective image$D_7\times C_{119}$