Properties

Label 1666.10.238.a1.e1
Order $ 7 $
Index $ 2 \cdot 7 \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7$
Order: \(7\)
Index: \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)
Exponent: \(7\)
Generators: $ab^{170}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_7\times C_{238}$
Order: \(1666\)\(\medspace = 2 \cdot 7^{2} \cdot 17 \)
Exponent: \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 7$ (hence hyperelementary), and metacyclic.

Quotient group ($Q$) structure

Description: $C_{238}$
Order: \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)
Exponent: \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)
Automorphism Group: $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Outer Automorphisms: $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{16}\times C_6.\SO(3,7)$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_7\times C_{238}$
Normalizer:$C_7\times C_{238}$
Complements:$C_{238}$ $C_{238}$ $C_{238}$ $C_{238}$ $C_{238}$ $C_{238}$ $C_{238}$
Minimal over-subgroups:$C_{119}$$C_7^2$$C_{14}$
Maximal under-subgroups:$C_1$
Autjugate subgroups:1666.10.238.a1.a11666.10.238.a1.b11666.10.238.a1.c11666.10.238.a1.d11666.10.238.a1.f11666.10.238.a1.g11666.10.238.a1.h1

Other information

Möbius function$-1$
Projective image$C_{238}$