Properties

Label 1665.3.5.a1.a1
Order $ 3^{2} \cdot 37 $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{37}:C_9$
Order: \(333\)\(\medspace = 3^{2} \cdot 37 \)
Index: \(5\)
Exponent: \(333\)\(\medspace = 3^{2} \cdot 37 \)
Generators: $a, a^{3}, b^{5}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Ambient group ($G$) information

Description: $C_{37}:C_{45}$
Order: \(1665\)\(\medspace = 3^{2} \cdot 5 \cdot 37 \)
Exponent: \(1665\)\(\medspace = 3^{2} \cdot 5 \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times F_{37}$, of order \(5328\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 37 \)
$\operatorname{Aut}(H)$ $F_{37}$, of order \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \)
$\operatorname{res}(\operatorname{Aut}(G))$$F_{37}$, of order \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_{37}:C_9$, of order \(333\)\(\medspace = 3^{2} \cdot 37 \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_{37}:C_{45}$
Complements:$C_5$
Minimal over-subgroups:$C_{37}:C_{45}$
Maximal under-subgroups:$C_{37}:C_3$$C_9$

Other information

Möbius function$-1$
Projective image$C_{37}:C_{45}$