Subgroup ($H$) information
| Description: | $C_{37}:C_9$ |
| Order: | \(333\)\(\medspace = 3^{2} \cdot 37 \) |
| Index: | \(5\) |
| Exponent: | \(333\)\(\medspace = 3^{2} \cdot 37 \) |
| Generators: |
$a, a^{3}, b^{5}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.
Ambient group ($G$) information
| Description: | $C_{37}:C_{45}$ |
| Order: | \(1665\)\(\medspace = 3^{2} \cdot 5 \cdot 37 \) |
| Exponent: | \(1665\)\(\medspace = 3^{2} \cdot 5 \cdot 37 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.
Quotient group ($Q$) structure
| Description: | $C_5$ |
| Order: | \(5\) |
| Exponent: | \(5\) |
| Automorphism Group: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
| Outer Automorphisms: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_4\times F_{37}$, of order \(5328\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 37 \) |
| $\operatorname{Aut}(H)$ | $F_{37}$, of order \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $F_{37}$, of order \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
| $W$ | $C_{37}:C_9$, of order \(333\)\(\medspace = 3^{2} \cdot 37 \) |
Related subgroups
| Centralizer: | $C_5$ | |
| Normalizer: | $C_{37}:C_{45}$ | |
| Complements: | $C_5$ | |
| Minimal over-subgroups: | $C_{37}:C_{45}$ | |
| Maximal under-subgroups: | $C_{37}:C_3$ | $C_9$ |
Other information
| Möbius function | $-1$ |
| Projective image | $C_{37}:C_{45}$ |