Properties

Label 165888.cs.864.A
Order $ 2^{6} \cdot 3 $
Index $ 2^{5} \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:A_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(4,12,5)(6,11,9)(7,8,10), (1,12)(3,9)(4,5)(6,11), (1,5)(4,12), (1,4)(2,10)(3,11)(5,12)(6,9)(7,8), (3,9)(6,11), (3,6)(9,11), (1,5)(2,7)(4,12)(8,10)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $A_4^3.(C_4\times S_4)$
Order: \(165888\)\(\medspace = 2^{11} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3^2:(C_4\times S_4)$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2\times C_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^3.(C_2^3\times S_4)$, of order \(331776\)\(\medspace = 2^{12} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $\AGammaL(3,4)$, of order \(23224320\)\(\medspace = 2^{13} \cdot 3^{4} \cdot 5 \cdot 7 \)
$W$$A_4^3:D_6$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$A_4^3.(C_4\times S_4)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4^3.(C_4\times S_4)$