Properties

Label 16464.n.3.a1.a1
Order $ 2^{4} \cdot 7^{3} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\He_7:D_8$
Order: \(5488\)\(\medspace = 2^{4} \cdot 7^{3} \)
Index: \(3\)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 5 & 1 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 5 & 2 & 6 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 3 & 3 & 1 & 0 \\ 5 & 4 & 4 & 0 \\ 6 & 3 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 3 & 6 & 0 & 0 \\ 2 & 0 & 6 & 0 \\ 0 & 5 & 3 & 1 \end{array}\right), \left(\begin{array}{rrrr} 5 & 2 & 4 & 5 \\ 6 & 4 & 6 & 4 \\ 4 & 2 & 5 & 5 \\ 1 & 4 & 1 & 4 \end{array}\right), \left(\begin{array}{rrrr} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 3 & 6 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrr} 0 & 3 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 5 & 6 & 0 & 4 \\ 3 & 5 & 5 & 2 \end{array}\right), \left(\begin{array}{rrrr} 1 & 1 & 3 & 3 \\ 3 & 4 & 4 & 3 \\ 1 & 5 & 5 & 6 \\ 5 & 1 & 4 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a Hall subgroup, and solvable.

Ambient group ($G$) information

Description: $\He_7:(C_3\times D_8)$
Order: \(16464\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{3} \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_7:(C_3\times \SD_{32})$, of order \(32928\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{3} \)
$\operatorname{Aut}(H)$ $\He_7:(C_3\times \SD_{32})$, of order \(32928\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{3} \)
$W$$\He_7:(C_3\times D_8)$, of order \(16464\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$\He_7:(C_3\times D_8)$
Complements:$C_3$
Minimal over-subgroups:$\He_7:(C_3\times D_8)$
Maximal under-subgroups:$\He_7:D_4$$\He_7:D_4$$\He_7:C_8$$D_{56}$

Other information

Möbius function$-1$
Projective image$\He_7:(C_3\times D_8)$