Properties

Label 16464.bo.12.e1.a1
Order $ 2^{2} \cdot 7^{3} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^2:D_{14}$
Order: \(1372\)\(\medspace = 2^{2} \cdot 7^{3} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 3 & 6 & 0 & 0 \\ 2 & 0 & 6 & 0 \\ 0 & 5 & 3 & 1 \end{array}\right), \left(\begin{array}{rrrr} 6 & 0 & 0 & 1 \\ 0 & 6 & 3 & 0 \\ 0 & 1 & 3 & 0 \\ 3 & 0 & 0 & 3 \end{array}\right), \left(\begin{array}{rrrr} 3 & 4 & 6 & 0 \\ 5 & 1 & 4 & 6 \\ 3 & 1 & 1 & 3 \\ 1 & 3 & 2 & 6 \end{array}\right), \left(\begin{array}{rrrr} 2 & 4 & 1 & 3 \\ 5 & 0 & 5 & 1 \\ 1 & 4 & 2 & 3 \\ 2 & 1 & 2 & 0 \end{array}\right), \left(\begin{array}{rrrr} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 2 & 2 & 1 & 0 \\ 0 & 2 & 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_7^2:D_{14}:D_6$
Order: \(16464\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_7.C_6^2.C_2^3$
$\operatorname{Aut}(H)$ $\He_7:C_6\wr C_2$, of order \(24696\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7^{3} \)
$W$$\He_7:D_4$, of order \(2744\)\(\medspace = 2^{3} \cdot 7^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times \He_7:D_4$
Normal closure:$\He_7:D_6$
Core:$C_7^2:D_7$
Minimal over-subgroups:$\He_7:D_6$$C_{14}.D_7^2$$\He_7:D_4$$\He_7:D_4$
Maximal under-subgroups:$C_7^2:D_7$$C_7^2:C_{14}$$D_7^2$
Autjugate subgroups:16464.bo.12.e1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-2$
Projective image$C_7^2:D_{14}:D_6$