Properties

Label 16464.bn.12.e1
Order $ 2^{2} \cdot 7^{3} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^2:D_{14}$
Order: \(1372\)\(\medspace = 2^{2} \cdot 7^{3} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 5 & 1 & 2 & 0 \\ 2 & 0 & 6 & 0 \\ 6 & 2 & 2 & 6 \end{array}\right), \left(\begin{array}{rrrr} 6 & 0 & 0 & 0 \\ 4 & 1 & 0 & 0 \\ 5 & 0 & 1 & 0 \\ 0 & 2 & 4 & 6 \end{array}\right), \left(\begin{array}{rrrr} 6 & 6 & 5 & 1 \\ 4 & 3 & 4 & 5 \\ 5 & 6 & 6 & 1 \\ 3 & 5 & 3 & 3 \end{array}\right), \left(\begin{array}{rrrr} 0 & 3 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 5 & 6 & 0 & 4 \\ 3 & 5 & 5 & 2 \end{array}\right), \left(\begin{array}{rrrr} 5 & 5 & 6 & 0 \\ 1 & 6 & 4 & 6 \\ 0 & 3 & 3 & 2 \\ 2 & 0 & 6 & 4 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $\He_7:(C_6\times D_4)$
Order: \(16464\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_7.C_4.C_6.C_2^3$
$\operatorname{Aut}(H)$ $\He_7:C_6\wr C_2$, of order \(24696\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7^{3} \)
$W$$C_7^2:(C_2\times F_7)$, of order \(4116\)\(\medspace = 2^{2} \cdot 3 \cdot 7^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_7^2:(C_2^2\times F_7)$
Normal closure:$C_{14}.D_7^2$
Core:$C_7^2:D_7$
Minimal over-subgroups:$C_7^2:(C_2\times F_7)$$C_{14}.D_7^2$
Maximal under-subgroups:$C_7^2:D_7$$C_7^2:C_{14}$$D_7^2$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$\He_7:(C_6\times D_4)$