Properties

Label 1638.40.3.b1.a1
Order $ 2 \cdot 3 \cdot 7 \cdot 13 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{91}:C_6$
Order: \(546\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 13 \)
Index: \(3\)
Exponent: \(546\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 13 \)
Generators: $a^{3}, b^{234}, b^{21}, a^{2}b^{43}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Ambient group ($G$) information

Description: $C_{273}:C_6$
Order: \(1638\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Exponent: \(546\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{273}.C_3.C_6.C_2^3$
$\operatorname{Aut}(H)$ $F_7\times F_{13}$, of order \(6552\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \)
$\operatorname{res}(S)$$F_7\times F_{13}$, of order \(6552\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_{91}:C_6$, of order \(546\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 13 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{273}:C_6$
Complements:$C_3$ $C_3$ $C_3$
Minimal over-subgroups:$C_{273}:C_6$
Maximal under-subgroups:$C_{91}:C_3$$D_{91}$$C_{13}:C_6$$F_7$
Autjugate subgroups:1638.40.3.b1.b11638.40.3.b1.c1

Other information

Möbius function$-1$
Projective image$C_{273}:C_6$