Subgroup ($H$) information
| Description: | $C_{91}:C_6$ |
| Order: | \(546\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 13 \) |
| Index: | \(3\) |
| Exponent: | \(546\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 13 \) |
| Generators: |
$a^{3}, b^{234}, b^{21}, a^{2}b^{43}$
|
| Derived length: | $2$ |
The subgroup is normal, maximal, a direct factor, nonabelian, and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).
Ambient group ($G$) information
| Description: | $C_{273}:C_6$ |
| Order: | \(1638\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
| Exponent: | \(546\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 13 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
| Description: | $C_3$ |
| Order: | \(3\) |
| Exponent: | \(3\) |
| Automorphism Group: | $C_2$, of order \(2\) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{273}.C_3.C_6.C_2^3$ |
| $\operatorname{Aut}(H)$ | $F_7\times F_{13}$, of order \(6552\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) |
| $\operatorname{res}(S)$ | $F_7\times F_{13}$, of order \(6552\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $C_{91}:C_6$, of order \(546\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 13 \) |
Related subgroups
Other information
| Möbius function | $-1$ |
| Projective image | $C_{273}:C_6$ |