Properties

Label 1632.932.3.a1.a1
Order $ 2^{5} \cdot 17 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\OD_{16}:C_{34}$
Order: \(544\)\(\medspace = 2^{5} \cdot 17 \)
Index: \(3\)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Generators: $\left(\begin{array}{rr} 1 & 0 \\ 0 & 408 \end{array}\right), \left(\begin{array}{rr} 408 & 0 \\ 0 & 408 \end{array}\right), \left(\begin{array}{rr} 48 & 0 \\ 0 & 48 \end{array}\right), \left(\begin{array}{rr} 354 & 0 \\ 0 & 354 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rr} 259 & 0 \\ 0 & 259 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $\OD_{16}:C_{102}$
Order: \(1632\)\(\medspace = 2^{5} \cdot 3 \cdot 17 \)
Exponent: \(408\)\(\medspace = 2^{3} \cdot 3 \cdot 17 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_8\times S_4).C_2^4$
$\operatorname{Aut}(H)$ $C_2^2\times C_{16}\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$(C_2^2\times C_{16}) \times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{408}$
Normalizer:$\OD_{16}:C_{102}$
Complements:$C_3$
Minimal over-subgroups:$\OD_{16}:C_{102}$
Maximal under-subgroups:$C_2\times C_{136}$$C_2\times C_{136}$$C_2\times C_{136}$$\OD_{16}\times C_{17}$$\OD_{16}\times C_{17}$$\OD_{16}\times C_{17}$$D_4:C_{34}$$\OD_{16}:C_2$

Other information

Möbius function$-1$
Projective image$C_2\times C_6$