Properties

Label 1632.823.272.b1.b1
Order $ 2 \cdot 3 $
Index $ 2^{4} \cdot 17 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(272\)\(\medspace = 2^{4} \cdot 17 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{17}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{204}.C_2^3$
Order: \(1632\)\(\medspace = 2^{5} \cdot 3 \cdot 17 \)
Exponent: \(408\)\(\medspace = 2^{3} \cdot 3 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{24}\times A_4).C_2^5$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(768\)\(\medspace = 2^{8} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{204}$
Normalizer:$C_6:C_{136}$
Normal closure:$C_2\times C_6$
Core:$C_3$
Minimal over-subgroups:$C_{102}$$C_2\times C_6$
Maximal under-subgroups:$C_3$$C_2$
Autjugate subgroups:1632.823.272.b1.a11632.823.272.b1.c1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_{204}.C_2^3$