Subgroup ($H$) information
Description: | $C_{17}$ |
Order: | \(17\) |
Index: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Exponent: | \(17\) |
Generators: |
$c^{12}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $17$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.
Ambient group ($G$) information
Description: | $C_{102}:C_4^2$ |
Order: | \(1632\)\(\medspace = 2^{5} \cdot 3 \cdot 17 \) |
Exponent: | \(204\)\(\medspace = 2^{2} \cdot 3 \cdot 17 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Quotient group ($Q$) structure
Description: | $C_2\times C_4\times C_{12}$ |
Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $C_2^7:S_4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \) |
Outer Automorphisms: | $C_2^7:S_4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{17}:(C_2.C_2^6.C_4.C_2^5)$ |
$\operatorname{Aut}(H)$ | $C_{16}$, of order \(16\)\(\medspace = 2^{4} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_{16}$, of order \(16\)\(\medspace = 2^{4} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(17408\)\(\medspace = 2^{10} \cdot 17 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_2^2\times C_{204}$ | |||
Normalizer: | $C_{102}:C_4^2$ | |||
Complements: | $C_2\times C_4\times C_{12}$ | |||
Minimal over-subgroups: | $C_{51}$ | $C_{34}$ | $C_{34}$ | $C_{34}$ |
Maximal under-subgroups: | $C_1$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_{102}:C_4^2$ |