Subgroup ($H$) information
Description: | $C_{34}$ |
Order: | \(34\)\(\medspace = 2 \cdot 17 \) |
Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(34\)\(\medspace = 2 \cdot 17 \) |
Generators: |
$a, d^{12}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_{204}.C_2^3$ |
Order: | \(1632\)\(\medspace = 2^{5} \cdot 3 \cdot 17 \) |
Exponent: | \(204\)\(\medspace = 2^{2} \cdot 3 \cdot 17 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_6\times Q_8$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Outer Automorphisms: | $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Nilpotency class: | $2$ |
Derived length: | $2$ |
The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^4.C_2^4.C_{51}.C_8.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_{16}$, of order \(16\)\(\medspace = 2^{4} \) |
$\operatorname{res}(S)$ | $C_{16}$, of order \(16\)\(\medspace = 2^{4} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(17408\)\(\medspace = 2^{10} \cdot 17 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_2^2\times C_{204}$ | ||
Normalizer: | $C_{204}.C_2^3$ | ||
Complements: | $C_6\times Q_8$ | ||
Minimal over-subgroups: | $C_{102}$ | $C_2\times C_{34}$ | $C_2\times C_{34}$ |
Maximal under-subgroups: | $C_{17}$ | $C_2$ |
Other information
Number of subgroups in this autjugacy class | $6$ |
Number of conjugacy classes in this autjugacy class | $6$ |
Möbius function | $0$ |
Projective image | $C_{102}:Q_8$ |