Properties

Label 1632.1135.24.c1
Order $ 2^{2} \cdot 17 $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{17}:C_4$
Order: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Generators: $ac, d^{102}, d^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{204}.C_2^3$
Order: \(1632\)\(\medspace = 2^{5} \cdot 3 \cdot 17 \)
Exponent: \(204\)\(\medspace = 2^{2} \cdot 3 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2\times C_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2\times \GL(3,2)$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2\times \GL(3,2)$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^4.C_{51}.C_8.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times F_{17}$, of order \(544\)\(\medspace = 2^{5} \cdot 17 \)
$\operatorname{res}(S)$$C_2\times F_{17}$, of order \(544\)\(\medspace = 2^{5} \cdot 17 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(384\)\(\medspace = 2^{7} \cdot 3 \)
$W$$D_{34}$, of order \(68\)\(\medspace = 2^{2} \cdot 17 \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$C_{204}.C_2^3$
Minimal over-subgroups:$C_{17}:C_{12}$$C_{34}:C_4$$C_{17}:Q_8$
Maximal under-subgroups:$C_{34}$$C_4$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$8$
Projective image$C_{102}:C_2^3$