Properties

Label 1632.1135.12.c1
Order $ 2^{3} \cdot 17 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{34}$
Order: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(34\)\(\medspace = 2 \cdot 17 \)
Generators: $a, b, d^{12}, d^{102}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_{204}.C_2^3$
Order: \(1632\)\(\medspace = 2^{5} \cdot 3 \cdot 17 \)
Exponent: \(204\)\(\medspace = 2^{2} \cdot 3 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^4.C_{51}.C_8.C_2^4$
$\operatorname{Aut}(H)$ $C_{16}\times \GL(3,2)$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{16}\times S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4352\)\(\medspace = 2^{8} \cdot 17 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^2\times C_{204}$
Normalizer:$C_{204}.C_2^3$
Minimal over-subgroups:$C_2^2\times C_{102}$$C_2^2\times C_{68}$$C_2^2.D_{34}$
Maximal under-subgroups:$C_2\times C_{34}$$C_2\times C_{34}$$C_2^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-2$
Projective image$C_3\times D_{34}$