Properties

Label 162000.o.90.cr1
Order $ 2^{3} \cdot 3^{2} \cdot 5^{2} $
Index $ 2 \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}:F_5:S_3$
Order: \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Index: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $ab^{6}c^{3}d^{6}ef^{2}, d^{3}f^{12}, b^{6}c^{8}d^{6}f^{12}, b^{4}d^{6}f^{12}, b^{3}c^{2}d^{6}f^{12}, f^{3}, d^{10}f^{5}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_{15}^2.(F_5\times S_3^2)$
Order: \(162000\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^3.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $F_{25}:D_6$, of order \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
$W$$C_5^2:(C_4\times S_3^2)$, of order \(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_5^2:(C_4\times S_3^2)$
Normal closure:$C_{15}\wr S_3:C_4$
Core:$C_5\times C_{15}$
Minimal over-subgroups:$C_5^3:C_6.D_6$$C_{15}^2:(C_4\times S_3)$$C_5^2:(C_4\times S_3^2)$
Maximal under-subgroups:$C_3\times C_5^2:D_6$$C_5^2:C_3^2:C_4$$(C_5\times C_{15}):C_{12}$$D_5^2.S_3$$C_5^2:(C_4\times S_3)$$C_6.D_6$

Other information

Number of subgroups in this autjugacy class$45$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^2.(F_5\times S_3^2)$