Properties

Label 162000.o.4500.p1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{2} \cdot 3^{2} \cdot 5^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times S_3$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(4500\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $ab^{9}cd^{12}f^{14}, b^{6}c^{8}d^{9}f^{3}, d^{10}f^{5}, b^{4}d^{12}f^{9}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{15}^2.(F_5\times S_3^2)$
Order: \(162000\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^3.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$C_4\times S_3^2$
Normal closure:$(C_5\times C_{15}^2):D_6$
Core:$C_3$
Minimal over-subgroups:$C_3\times C_5^2:D_6$$C_{15}:D_6$$C_3^2:D_6$$S_3\times D_6$$S_3\times C_{12}$$C_6.D_6$
Maximal under-subgroups:$C_3\times S_3$$C_3\times C_6$$C_3\times S_3$$C_2\times C_6$$D_6$

Other information

Number of subgroups in this autjugacy class$1125$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^2.(F_5\times S_3^2)$