Properties

Label 162000.o.1080.cy1
Order $ 2 \cdot 3 \cdot 5^{2} $
Index $ 2^{3} \cdot 3^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5\times C_{15}$
Order: \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \)
Index: \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $ab^{9}c^{9}d^{9}f^{8}, f^{3}, d^{3}f^{9}, d^{10}f^{5}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{15}^2.(F_5\times S_3^2)$
Order: \(162000\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^3.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $C_{10}:C_4^2$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$W$$C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)

Related subgroups

Centralizer:$C_3\times C_{15}$
Normalizer:$C_{15}^2.C_4.C_2^2$
Normal closure:$C_{15}^2:D_{15}$
Core:$C_5\times C_{15}$
Minimal over-subgroups:$C_5^2:C_{30}$$C_{15}:C_{30}$$C_{15}\times D_{15}$$C_3\times C_5^2:S_3$$C_{15}:D_{10}$$C_3\times D_5^2$$D_5\times D_{15}$
Maximal under-subgroups:$C_5\times C_{15}$$C_5\times D_5$$C_{30}$$C_3\times D_5$

Other information

Number of subgroups in this autjugacy class$45$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^2.(F_5\times S_3^2)$