Properties

Label 162000.be.54000.b1
Order $ 3 $
Index $ 2^{4} \cdot 3^{3} \cdot 5^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(54000\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(3\)
Generators: $f^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_3^3:D_5\wr S_3$
Order: \(162000\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^3.C_6^2.(C_{12}\times S_3^2)$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_5^3.(C_3\times C_6^2:C_2)$
Normalizer:$C_{15}^3.C_2^3.C_2$
Normal closure:$C_3^2$
Core:$C_1$
Minimal over-subgroups:$C_{15}$$C_{15}$$C_{15}$$C_{15}$$C_{15}$$C_{15}$$C_{15}$$C_{15}$$C_{15}$$C_3^2$$C_3^2$$C_6$$C_6$$C_6$$S_3$$S_3$$S_3$$S_3$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^3:D_5\wr S_3$