Properties

Label 162.29.81.a1.a1
Order $ 2 $
Index $ 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(81\)\(\medspace = 3^{4} \)
Exponent: \(2\)
Generators: $c^{9}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $2$-Sylow subgroup (hence a Hall subgroup), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_6.\He_3$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_3.\He_3$
Order: \(81\)\(\medspace = 3^{4} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Automorphism Group: $C_3^3:D_6$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Outer Automorphisms: $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $3$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:D_6$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(\operatorname{Aut}(G))$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_6.\He_3$
Normalizer:$C_6.\He_3$
Complements:$C_3.\He_3$
Minimal over-subgroups:$C_6$$C_6$$C_6$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_3.\He_3$