Subgroup ($H$) information
Description: | not computed |
Order: | \(268912\)\(\medspace = 2^{4} \cdot 7^{5} \) |
Index: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Exponent: | not computed |
Generators: |
$\langle(8,10,14,12,9,13,11), (29,32,34,30,33,35,31), (22,26,25,28,27,24,23), (1,9,2,11,3,10,6,12,7,13,4,8,5,14) \!\cdots\! \rangle$
|
Derived length: | not computed |
The subgroup is nonabelian and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.
Ambient group ($G$) information
Description: | $C_7^5:(C_2^4:A_5)$ |
Order: | \(16134720\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 7^{5} \) |
Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
Derived length: | $0$ |
The ambient group is nonabelian and perfect (hence nonsolvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7^5:(C_2\wr S_5\times C_3)$, of order \(193616640\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 7^{5} \) |
$\operatorname{Aut}(H)$ | not computed |
$W$ | $D_7\wr C_2^2$, of order \(153664\)\(\medspace = 2^{6} \cdot 7^{4} \) |
Related subgroups
Centralizer: | not computed |
Normalizer: | $C_7^5.C_2\wr C_2^2$ |
Normal closure: | $C_7^5:(C_2^4:A_5)$ |
Core: | $C_7^5$ |
Other information
Number of subgroups in this autjugacy class | $15$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_7^5:(C_2^4:A_5)$ |