Properties

Label 16134720.d.120.J
Order $ 2^{3} \cdot 7^{5} $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(134456\)\(\medspace = 2^{3} \cdot 7^{5} \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: not computed
Generators: $\langle(8,24,12,26)(9,25,11,27)(10,23,14,22)(13,28)(15,29,20,35)(16,33,17,32)(18,31) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_7^5:(C_2^4:A_5)$
Order: \(16134720\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 7^{5} \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian and perfect (hence nonsolvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^5:(C_2\wr S_5\times C_3)$, of order \(193616640\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 7^{5} \)
$\operatorname{Aut}(H)$ not computed
$W$$C_7:D_7^3:C_2^2$, of order \(76832\)\(\medspace = 2^{5} \cdot 7^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_7\times C_7^4.C_2.C_2^4$
Normal closure:$C_7^5:(C_2^4:A_5)$
Core:$C_7^5$

Other information

Number of subgroups in this autjugacy class$30$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_7^5:(C_2^4:A_5)$