Subgroup ($H$) information
| Description: | $C_2^2\times D_4$ | 
| Order: | \(32\)\(\medspace = 2^{5} \) | 
| Index: | \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) | 
| Exponent: | \(4\)\(\medspace = 2^{2} \) | 
| Generators: | 
		
    $\langle(5,7), (5,8)(6,7), (1,4)(2,3), (1,3)(2,4), (5,7)(6,8)\rangle$
    
    
    
         | 
| Nilpotency class: | $2$ | 
| Derived length: | $2$ | 
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the radical, nonabelian, a $p$-group (hence elementary and hyperelementary), metabelian, and rational. Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
| Description: | $C_2^2\times S_7\times D_4$ | 
| Order: | \(161280\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \cdot 7 \) | 
| Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, nonsolvable, and rational.
Quotient group ($Q$) structure
| Description: | $S_7$ | 
| Order: | \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) | 
| Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) | 
| Automorphism Group: | $S_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) | 
| Outer Automorphisms: | $C_1$, of order $1$ | 
| Nilpotency class: | $-1$ | 
| Derived length: | $1$ | 
The quotient is nonabelian, almost simple, nonsolvable, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^5.C_2^6.D_6.A_7.C_2$ | 
| $\operatorname{Aut}(H)$ | $C_2^6:(C_2\times S_4)$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \) | 
| $W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) | 
Related subgroups
| Centralizer: | $C_2^3\times S_7$ | 
| Normalizer: | $C_2^2\times S_7\times D_4$ | 
Other information
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | not computed | 
| Projective image | $C_2^2\times S_7$ |