Properties

Label 16128.by.5376.c1
Order $ 3 $
Index $ 2^{8} \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \)
Exponent: \(3\)
Generators: $\langle(1,3,2)(8,15,13)(9,10,11)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_6\times C_2^4:\GL(3,2)$
Order: \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^4.\PSL(2,7)\times S_3$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_6^2$
Normalizer:$C_2\times C_6^2$
Normal closure:$C_3\times C_2^3:\GL(3,2)$
Core:$C_1$
Minimal over-subgroups:$C_7:C_3$$A_4$$A_4$$A_4$$C_3^2$$C_6$$C_6$$C_6$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$224$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_6\times C_2^4:\GL(3,2)$