Subgroup ($H$) information
Description: | $C_3$ |
Order: | \(3\) |
Index: | \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \) |
Exponent: | \(3\) |
Generators: |
$\langle(1,3,2)(8,15,13)(9,10,11)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Ambient group ($G$) information
Description: | $C_6\times C_2^4:\GL(3,2)$ |
Order: | \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_2^4.\PSL(2,7)\times S_3$ |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $224$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_6\times C_2^4:\GL(3,2)$ |