Properties

Label 1600.5593.20.e1
Order $ 2^{4} \cdot 5 $
Index $ 2^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{80}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Generators: $a^{5}c^{5}, c^{10}, c^{4}, a^{2}, c^{8}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{16}.C_{10}^2$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times A_4).C_2^4.S_5$
$\operatorname{Aut}(H)$ $C_2\times C_4^2$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(S)$$C_2\times C_4^2$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(160\)\(\medspace = 2^{5} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{10}\times C_{80}$
Normalizer:$C_{16}.C_{10}^2$
Minimal over-subgroups:$C_5\times C_{80}$$C_2\times C_{80}$$C_5\times \OD_{32}$
Maximal under-subgroups:$C_{40}$$C_{16}$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$18$
Möbius function$-2$
Projective image$C_2^2\times C_{10}$