Properties

Label 1600.5492.10.c1
Order $ 2^{5} \cdot 5 $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8:C_{20}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $ab^{5}, c^{20}, b^{4}, b^{10}, c^{25}, c^{10}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_4.C_{20}^2$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.C_2^6.C_2^2.S_5$
$\operatorname{Aut}(H)$ $C_2^5.C_2^4$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{res}(S)$$C_2^5.C_2^4$, of order \(512\)\(\medspace = 2^{9} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(80\)\(\medspace = 2^{4} \cdot 5 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{10}\times C_{20}$
Normalizer:$C_4.C_{20}^2$
Complements:$C_{10}$
Minimal over-subgroups:$C_{40}:C_{20}$$C_4^2.C_{20}$
Maximal under-subgroups:$C_4\times C_{20}$$C_2\times C_{40}$$C_8:C_4$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$24$
Möbius function$1$
Projective image$C_2^2\times C_{10}$