Subgroup ($H$) information
| Description: | $C_2$ |
| Order: | \(2\) |
| Index: | \(800\)\(\medspace = 2^{5} \cdot 5^{2} \) |
| Exponent: | \(2\) |
| Generators: |
$b^{10}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.
Ambient group ($G$) information
| Description: | $C_2\times C_{20}\times C_{40}$ |
| Order: | \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \) |
| Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group).
Quotient group ($Q$) structure
| Description: | $C_2\times C_{10}\times C_{40}$ |
| Order: | \(800\)\(\medspace = 2^{5} \cdot 5^{2} \) |
| Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Automorphism Group: | $C_2^3:A_4.C_2^3.C_2.S_5$ |
| Outer Automorphisms: | $C_2^3:A_4.C_2^3.C_2.S_5$ |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^5.C_2^6.C_2^2.S_5$ |
| $\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
| $\card{W}$ | $1$ |
Related subgroups
| Centralizer: | $C_2\times C_{20}\times C_{40}$ | |||
| Normalizer: | $C_2\times C_{20}\times C_{40}$ | |||
| Minimal over-subgroups: | $C_{10}$ | $C_2^2$ | $C_4$ | $C_2^2$ |
| Maximal under-subgroups: | $C_1$ |
Other information
| Number of subgroups in this autjugacy class | $2$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | not computed |
| Projective image | not computed |