Properties

Label 1600.4538.400.c1.b1
Order $ 2^{2} $
Index $ 2^{4} \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a^{4}c^{5}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a $p$-group.

Ambient group ($G$) information

Description: $C_{20}^2.C_4$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{10}:C_{40}$
Order: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Automorphism Group: $D_4\times C_{10}:C_4^2$, of order \(1280\)\(\medspace = 2^{8} \cdot 5 \)
Outer Automorphisms: $C_4^2:C_2^3$, of order \(128\)\(\medspace = 2^{7} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:((C_2^7\times C_4).C_2^4)$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(10240\)\(\medspace = 2^{11} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{20}^2.C_4$
Normalizer:$C_{20}^2.C_4$
Minimal over-subgroups:$C_{20}$$C_{20}$$C_{20}$$C_{20}$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$
Maximal under-subgroups:$C_2$
Autjugate subgroups:1600.4538.400.c1.a1

Other information

Möbius function$0$
Projective image$C_{10}:C_{40}$