Properties

Label 1600.2017.2.c1
Order $ 2^{5} \cdot 5^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{50}.C_2^3$
Order: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Index: \(2\)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Generators: $a, d^{64}, c, d^{50}, b, d^{20}, c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{50}.C_2^4$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^4.C_{75}.C_{10}.C_2^3$
$\operatorname{Aut}(H)$ $D_{25}.C_{10}\times C_2^3.\PSL(2,7)$
$\card{\operatorname{res}(S)}$\(96000\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_{50}:C_4$, of order \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$D_{50}.C_2^4$
Minimal over-subgroups:$D_{50}.C_2^4$
Maximal under-subgroups:$D_{50}:C_4$$C_2^2\times D_{50}$$D_{50}:C_4$$C_2^3\times F_5$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-1$
Projective image$C_{50}:C_4$