Subgroup ($H$) information
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Index: | \(400\)\(\medspace = 2^{4} \cdot 5^{2} \) |
| Exponent: | \(2\) |
| Generators: |
$b^{10}, c^{10}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), stem, a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
| Description: | $C_{20}^2.C_2^2$ |
| Order: | \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \) |
| Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_{10}^2:C_4$ |
| Order: | \(400\)\(\medspace = 2^{4} \cdot 5^{2} \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Automorphism Group: | $C_5^2.C_2^5.C_2^2.S_5$ |
| Outer Automorphisms: | $D_4\times \GL(2,5)$, of order \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{10}^2.C_2^4.C_2^4.S_5$ |
| $\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_1$, of order $1$ |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(3072000\)\(\medspace = 2^{13} \cdot 3 \cdot 5^{3} \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_{20}^2.C_2^2$ | ||||
| Normalizer: | $C_{20}^2.C_2^2$ | ||||
| Minimal over-subgroups: | $C_2\times C_{10}$ | $C_2\times C_4$ | $C_2\times C_4$ | $C_2\times C_4$ | $C_2\times C_4$ |
| Maximal under-subgroups: | $C_2$ | $C_2$ | $C_2$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $C_{10}^2:C_4$ |