Subgroup ($H$) information
| Description: | $C_8$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Index: | \(200\)\(\medspace = 2^{3} \cdot 5^{2} \) |
| Exponent: | \(8\)\(\medspace = 2^{3} \) |
| Generators: |
$b^{5}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.
Ambient group ($G$) information
| Description: | $C_{40}.C_{40}$ |
| Order: | \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \) |
| Exponent: | \(80\)\(\medspace = 2^{4} \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).
Quotient group ($Q$) structure
| Description: | $C_5:C_{40}$ |
| Order: | \(200\)\(\medspace = 2^{3} \cdot 5^{2} \) |
| Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Automorphism Group: | $D_{10}:C_4^2$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \) |
| Outer Automorphisms: | $C_2^3\times C_4$, of order \(32\)\(\medspace = 2^{5} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_5:((C_2\times C_4^3).C_2^4)$ |
| $\operatorname{Aut}(H)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2560\)\(\medspace = 2^{9} \cdot 5 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_{20}\times C_{40}$ | ||||
| Normalizer: | $C_{40}.C_{40}$ | ||||
| Minimal over-subgroups: | $C_{40}$ | $C_{40}$ | $C_{40}$ | $C_{40}$ | $C_2\times C_8$ |
| Maximal under-subgroups: | $C_4$ |
Other information
| Möbius function | $0$ |
| Projective image | $C_{20}:C_{40}$ |