Properties

Label 1600.10072.160.a1
Order $ 2 \cdot 5 $
Index $ 2^{5} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a, c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_2^2\times C_{20}:C_{20}$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $D_{10}.D_4$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $C_2\wr C_2^2\times F_5$, of order \(1280\)\(\medspace = 2^{8} \cdot 5 \)
Outer Automorphisms: $C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^4.C_{30}.C_2.C_2^4$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10240\)\(\medspace = 2^{11} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2\times C_{20}:C_{20}$
Normalizer:$C_2^2\times C_{20}:C_{20}$
Complements:$D_{10}.D_4$
Minimal over-subgroups:$C_5\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$
Maximal under-subgroups:$C_5$$C_2$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$6$
Möbius function$0$
Projective image$D_{10}.D_4$