Properties

Label 16.14.4.a1.y1
Order $ 2^{2} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Generators: $ab, cd$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_2^4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(2\)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^4$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$C_2^3$$C_2^3$$C_2^3$
Maximal under-subgroups:$C_2$$C_2$$C_2$
Autjugate subgroups:16.14.4.a1.a116.14.4.a1.b116.14.4.a1.c116.14.4.a1.d116.14.4.a1.e116.14.4.a1.f116.14.4.a1.g116.14.4.a1.h116.14.4.a1.i116.14.4.a1.j116.14.4.a1.k116.14.4.a1.l116.14.4.a1.m116.14.4.a1.n116.14.4.a1.o116.14.4.a1.p116.14.4.a1.q116.14.4.a1.r116.14.4.a1.s116.14.4.a1.t116.14.4.a1.u116.14.4.a1.v116.14.4.a1.w116.14.4.a1.x116.14.4.a1.z116.14.4.a1.ba116.14.4.a1.bb116.14.4.a1.bc116.14.4.a1.bd116.14.4.a1.be116.14.4.a1.bf116.14.4.a1.bg116.14.4.a1.bh116.14.4.a1.bi1

Other information

Möbius function$2$
Projective image$C_2^2$