Properties

Label 159720.h.14520._.A
Order $ 11 $
Index $ 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}$
Order: \(11\)
Index: \(14520\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \)
Exponent: \(11\)
Generators: $\left(\begin{array}{rr} 34 & 0 \\ 0 & 34 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_5\times C_{11}^3:D_{12}$
Order: \(159720\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{3} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_5\times C_{11}^2:D_{12}$
Order: \(14520\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Automorphism Group: $C_{11}^2.C_6.C_{10}.C_4.C_2^3$
Outer Automorphisms: $D_4\times C_{20}$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_6.C_{10}^2.C_2^5$
$\operatorname{Aut}(H)$ $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed