Subgroup ($H$) information
| Description: | $D_4:C_2^2$ |
| Order: | \(32\)\(\medspace = 2^{5} \) |
| Index: | \(4950\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$\left(\begin{array}{rrrr}
1 & 1 & 7 & 6 \\
4 & 7 & 0 & 7 \\
8 & 3 & 4 & 10 \\
8 & 8 & 7 & 10
\end{array}\right), \left(\begin{array}{rrrr}
5 & 5 & 10 & 0 \\
10 & 6 & 0 & 1 \\
8 & 0 & 6 & 5 \\
0 & 3 & 10 & 5
\end{array}\right), \left(\begin{array}{rrrr}
6 & 6 & 1 & 0 \\
9 & 5 & 0 & 10 \\
8 & 0 & 5 & 6 \\
0 & 3 & 9 & 6
\end{array}\right), \left(\begin{array}{rrrr}
5 & 5 & 8 & 2 \\
7 & 3 & 4 & 8 \\
9 & 1 & 8 & 6 \\
5 & 9 & 4 & 6
\end{array}\right), \left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 10 & 0 & 0 \\
0 & 0 & 10 & 0 \\
0 & 0 & 0 & 10
\end{array}\right)$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
| Description: | $\GL(2,11):D_6$ |
| Order: | \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
| Exponent: | \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2\times C_6).C_2^5.\PSL(2,11).C_2$ |
| $\operatorname{Aut}(H)$ | $S_4\wr C_2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
| $W$ | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $495$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $2$ |
| Projective image | not computed |